Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339042

We have previously proven the involvement of transient receptor potential ankyrin 1 (TRPA1) in stress adaptation. A lack of TRPA1 affects both urocortin 1 (member of the corticotropin-releasing hormone (CRH) family) content of the Edinger-Westphal nucleus. The noradrenergic locus ceruleus (LC) is also an important player in mood control. We aimed at investigating whether the TRPA1 is expressed in the LC, and to test if the response to chronic variable mild stress (CVMS) is affected by a lack of TRPA1. The TRPA1 expression was examined via RNAscope in situ hybridization. We investigated TRPA1 knockout and wildtype mice using the CVMS model of depression. Tyrosine hydroxylase (TH) and FOSB double immunofluorescence were used to test the functional neuromorphological changes in the LC. No TRPA1 expression was detected in the LC. The TH content was not affected by CVMS exposure. The CVMS-induced FOSB immunosignal did not co-localize with the TH neurons. TRPA1 is not expressed in the LC. A lack of functional TRPA1 receptor neither directly nor indirectly affects the TH content of LC neurons under CVMS.


Locus Coeruleus , Stress, Psychological , TRPA1 Cation Channel , Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Gene Expression , Locus Coeruleus/physiopathology , Urocortins/metabolism , TRPA1 Cation Channel/genetics , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Tyrosine 3-Monooxygenase/metabolism
2.
Sci Rep ; 13(1): 16813, 2023 10 05.
Article En | MEDLINE | ID: mdl-37798377

Various organosulfur compounds, such as dimethyl trisulfide (DMTS), display anti-inflammatory properties. We aimed to examine the effects of DMTS on acute pancreatitis (AP) and its mechanism of action in both in vivo and in vitro studies. AP was induced in FVB/n mice or Wistar rats by caerulein, ethanol-palmitoleic acid, or L-ornithine-HCl. DMTS treatments were administered subcutaneously. AP severity was assessed by pancreatic histological scoring, pancreatic water content, and myeloperoxidase activity measurements. The behaviour of animals was followed. Pancreatic heat shock protein 72 (HSP72) expression, sulfide, and protein persulfidation were measured. In vitro acinar viability, intracellular Ca2+ concentration, and reactive oxygen species production were determined. DMTS dose-dependently decreased the severity of AP. It declined the pancreatic infiltration of leukocytes and cellular damage in mice. DMTS upregulated the HSP72 expression during AP and elevated serum sulfide and low molecular weight persulfide levels. DMTS exhibited cytoprotection against hydrogen peroxide and AP-inducing agents. It has antioxidant properties and modulates physiological but not pathophysiological Ca2+ signalling. Generally, DMTS ameliorated AP severity and protected pancreatic acinar cells. Our findings indicate that DMTS is a sulfur donor with anti-inflammatory and antioxidant effects, and organosulfur compounds require further investigation into this potentially lethal disease.


Pancreatitis , Rats , Mice , Animals , Pancreatitis/pathology , Rats, Wistar , Acute Disease , Pancreas/metabolism , Sulfides/pharmacology , Sulfides/therapeutic use , Sulfides/metabolism , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Ceruletide/pharmacology
3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37511603

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Edinger-Westphal Nucleus , Parkinson Disease , Animals , Rats , Basal Ganglia/metabolism , Dopamine/metabolism , Down-Regulation , Edinger-Westphal Nucleus/metabolism , Levodopa/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rotenone/metabolism , Substantia Nigra/metabolism
4.
Int J Mol Sci ; 24(10)2023 May 19.
Article En | MEDLINE | ID: mdl-37240340

Middle-aged obesity and aging cachexia present healthcare challenges. Central responsiveness to body-weight-reducing mediators, e.g., to leptin, changes during aging in a way, which may promote middle-aged obesity and aging cachexia. Leptin is connected to urocortin 2 (Ucn2), an anorexigenic and hypermetabolic member of the corticotropin family. We aimed to study the role of Ucn2 in middle-aged obesity and aging cachexia. The food intake, body weight and hypermetabolic responses (oxygen consumption, core temperature) of male Wistar rats (3, 6, 12 and 18 months) were tested following intracerebroventricular injections of Ucn2. Following one central injection, Ucn2-induced anorexia lasted for 9 days in the 3-month, 14 days in the 6-month and 2 days in the 18-month group. Middle-aged 12-month rats failed to show anorexia or weight loss. Weight loss was transient (4 days) in the 3-month, 14 days in the 6-month and slight but long-lasting in the 18-month rats. Ucn2-induced hypermetabolism and hyperthermia increased with aging. The age-dependent changes in the mRNA expression of Ucn2 detected by RNAscope in the paraventricular nucleus correlated with the anorexigenic responsiveness. Our results show that age-dependent changes in Ucn2 may contribute to middle-aged obesity and aging cachexia. Ucn2 shows potential in the prevention of middle-aged obesity.


Leptin , Urocortins , Rats , Male , Animals , Leptin/metabolism , Rats, Wistar , Urocortins/genetics , Cachexia , Anorexia/metabolism , Aging/metabolism , Obesity/metabolism , Body Weight
5.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36982563

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Astrocytes , Hyperalgesia , Mice , Male , Female , Animals , Hyperalgesia/metabolism , Astrocytes/metabolism , Microglia/metabolism , Interleukin-1/metabolism , Pain/metabolism , Brain/metabolism
6.
Front Cell Dev Biol ; 10: 1059073, 2022.
Article En | MEDLINE | ID: mdl-36561364

The centrally projecting Edinger-Westphal nucleus (EWcp) is involved in stress adaptation. Transient receptor potential ankyrin 1 (TRPA1) mRNA was previously shown to be expressed abundantly in mouse and human EWcp urocortin 1 (UCN1) positive neurons and reacted to chronic stress. Since UCN1 neurons are deeply implicated in stress-related disorders, we hypothesized that TRPA1/UCN1 neurons are also affected in posttraumatic stress disorder (PTSD). We examined male Trpa1 wild type (WT) and gene-deficient (KO) mice in the single prolonged stress (SPS) model of PTSD. Two weeks later the behavioral changes were monitored by forced swim test (FST) and restraint. The Trpa1 and Ucn1 mRNA expression and the UCN1 peptide content were assessed by RNAscope in situ hybridization technique combined with immunofluorescence labeling in the EWcp. SPS-induced immobility was lower in Trpa1 KO compared to WT animals, both in the FST and restraint, corresponding to diminished depression-like behavior. The copy number of Trpa1 mRNA decreased significantly in EWcp of WT animals in response to SPS. Higher basal Ucn1 mRNA expression was observed in the EWcp of KO animals, that was not affected by SPS exposure. EWcp neurons of WT animals responded to SPS with substantially increased amount of UCN1 peptide content compared to control animals, whereas such changes were not observable in KO mice. The decreased Trpa1 mRNA expression in the SPS model of PTSD associated with increased neuronal UCN1 peptide content suggests that this cation channel might be involved in the regulation of stress adaptation and may contribute to the pathomechanism of PTSD.

7.
Orv Hetil ; 163(46): 1834-1839, 2022 Nov 13.
Article Hu | MEDLINE | ID: mdl-36373580

Introduction: Limited fasciectomy is the gold-standard treatment in Dupuytren's surgery. The anatomical position of digital nerves can be altered by Dupuytren's tissue resulting in a difficult dissection and localization, with a relatively high risk of iatrogenic nerve injury. This risk could be decreased by using intraoperative neural marking to facilitate locating the potentially displaced nerves. We recently demonstrated in an animal model that in vivo nerve staining with methylene blue is a suitable method to mark nerves without damaging them. Objective: We aimed to test the efficacy of our methylene blue nerve staining technique developed in a rat sciatic nerve model on human cadaveric digital nerves. Method: First, we performed epineural staining using 40 µl 1 : 80 diluted methylene blue solution on four human cadaver digital nerves fixed with formalin. In the second experiment, we stained six cadaver digital nerves without previous fixation. To increase the length of the stained segments, we used 200 µl solution on two nerves. Results: The epineural nerve labeling was not successful on formalin-fixed tissues. However, nerves without fixation were successfully stained with methylene blue. Forty µl methylene blue solution marked a 13 mm long segment, while 200 µl stained a 18 mm long segment. Conclusion: The epineural methylene blue nerve staining is limited on formalin-fixed digital nerves due tissue shrink-age. Non-fixed nerves with preserved histological structure can be stained in an 18 mm long segment. Further studies are necessary to determine the technique's value in hand surgery by testing digital nerves surrounded by Dupuytren's and scar tissues.


Dupuytren Contracture , Humans , Rats , Animals , Dupuytren Contracture/pathology , Dupuytren Contracture/surgery , Methylene Blue , Neoplasm Recurrence, Local , Cadaver , Formaldehyde
8.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36233039

Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.


Fluoxetine , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Depression/drug therapy , Depression/genetics , Epigenesis, Genetic , Fluoxetine/pharmacology , Hippocampus , Histones/genetics , Lysine/genetics , Male , Mice , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Prefrontal Cortex , Reproducibility of Results
9.
Front Endocrinol (Lausanne) ; 13: 995900, 2022.
Article En | MEDLINE | ID: mdl-36213293

According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.


Depression , Fluoxetine , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Male , Mice , Calcium Carbonate , Corticotropin-Releasing Hormone/metabolism , Depression/drug therapy , Depression/genetics , Disease Models, Animal , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Histones , Mixed Function Oxygenases , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/genetics , Tyrosine , Urocortins/metabolism
10.
J Psychiatry Neurosci ; 47(3): E162-E175, 2022.
Article En | MEDLINE | ID: mdl-35508327

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1), a cation channel, is expressed predominantly in primary sensory neurons, but its central distribution and role in mood control are not well understood. We investigated whether TRPA1 is expressed in the urocortin 1 (UCN1)-immunoreactive centrally projecting Edinger-Westphal nucleus (EWcp), and we hypothesized that chronic variable mild stress (CVMS) would reduce its expression in mice. We anticipated that TRPA1 mRNA would be present in the human EWcp, and that it would be downregulated in people who died by suicide. METHODS: We exposed Trpa1 knockout and wild-type mice to CVMS or no-stress control conditions. We then performed behavioural tests for depression and anxiety, and we evaluated physical and endocrinological parameters of stress. We assessed EWcp Trpa1 and Ucn1 mRNA expression, as well as UCN1 peptide content, using RNA-scope in situ hybridization and immunofluorescence. We tested human EWcp samples for TRPA1 using reverse transcription polymerase chain reaction. RESULTS: Trpa1 mRNA was colocalized with EWcp/UCN1 neurons. Non-stressed Trpa1 knockout mice expressed higher levels of Ucn1 mRNA, had less body weight gain and showed greater immobility in the forced swim test than wild-type mice. CVMS downregulated EWcp/Trpa1 expression and increased immobility in the forced swim test only in wild-type mice. We confirmed that TRPA1 mRNA expression was downregulated in the human EWcp in people who died by suicide. LIMITATIONS: Developmental compensations and the global lack of TRPA1 may have influenced our findings. Because experimental data came from male brains only, we have no evidence for whether findings would be similar in female brains. Because a TRPA1-specific antibody is lacking, we have provided mRNA data only. Limited access to high-quality human tissues restricted sample size. CONCLUSION: TRPA1 in EWcp/UCN1 neurons might contribute to the regulation of depression-like behaviour and stress adaptation response in mice. In humans, TRPA1 might contribute to mood control via EWcp/UCN1 neurons.


Edinger-Westphal Nucleus , Suicide , Animals , Edinger-Westphal Nucleus/metabolism , Female , Humans , Ion Channels/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , RNA, Messenger/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , Urocortins/metabolism
11.
J Neuroinflammation ; 19(1): 31, 2022 Feb 02.
Article En | MEDLINE | ID: mdl-35109869

BACKGROUND: The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS: Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS: In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS: Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.


Edinger-Westphal Nucleus , Parkinson Disease , Animals , Anxiety , Humans , Neurons/physiology , Rats , Urocortins/genetics
12.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article En | MEDLINE | ID: mdl-35163843

Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM-5 µM) and capsaicin (100 nM-45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.


Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics , Up-Regulation , Aged , Aged, 80 and over , Calcium/metabolism , Capsaicin/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization , Isothiocyanates/pharmacology , Male , Middle Aged , Mouth Neoplasms/metabolism , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism , Up-Regulation/drug effects
13.
Eur Surg Res ; 63(3): 105-113, 2022.
Article En | MEDLINE | ID: mdl-34689139

BACKGROUND: In Dupuytren's surgery, limited fasciectomy is still the gold-standard treatment. A relatively high risk of iatrogenic nerve injury has been observed especially when the spiral cords of the Dupuytren's tissue pull digital nerves away from their normal anatomical location. Intraoperative neural marking could facilitate locating the potentially displaced nerves. Hence, surgery could be undertaken more quickly with a lower risk of iatrogenic nerve injury. OBJECTIVES: We hypothesize that digital nerves may be stained with methylene blue (MB) in vivo providing a visual aid to distinguish them from Dupuytren's tissue. We aim to (a) test an in vivo nerve staining technique using MB in a rat sciatic nerve model and to (b) assess the safety of epineural MB injection. METHODS: Three experiments were performed: first, the effects of (a) sham surgery, (b) epineural needle insertion, and (c) 40 µL epineural saline injection were tested in the rat sciatic nerve. Second, we determined the (a) histoanatomical localization of the epineurally injected 40 µL 1 m/m% MB stock solution and (b) we tested which saline dilution (i.e., 1:40, 1:80, and 1:160) of the stock solution does provide optimal blue color upon 40 µL epineural injection. Third, the functional and morphological effect of 40 µL 1:80 diluted MB injection was compared with that of saline, injected into the contralateral sciatic nerve. The functional effects were tested by assessing the pain threshold by using a dynamic plantar esthesiometer (DPA) and by examination of the animal's gate and paw posture. Sciatic nerves were subjected to histological examination and morphometry to test structural damage. RESULTS: Neither epineural needle insertion nor saline injection caused any functional or morphological changes. Histological examination revealed that the MB stained the epineural compartment. Epineural injection of 40 µL 1:80 diluted MB into the sciatic nerve stained an 18.18-mm segment of the nerve distal to the puncture point. DPA revealed unchanged pain threshold values on the plantar surface of the limbs. Normal gait and foot posture suggested normal motor functions in all groups. No histological changes were seen in the stained nerves, and the nerve fiber density remained unchanged. CONCLUSION: We demonstrated that in vivo nerve staining with MB is a suitable method to mark nerves without causing detectable negative effect to the stained nerve. Human trials are required to prove the efficacy of the technique in Dupuytren's disease.


Methylene Blue , Sciatic Nerve , Animals , Humans , Iatrogenic Disease , Rats , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Sciatic Nerve/surgery
14.
Front Cell Dev Biol ; 10: 1046559, 2022.
Article En | MEDLINE | ID: mdl-36704197

Introduction: The centrally projecting Edinger-Westphal nucleus (EWcp) contributes to the control of alcohol consumption by its urocortin 1 (UCN1) and cocaine- and amphetamine-regulated transcript (CART) co-expressing peptidergic neurons. Our group recently showed that the urocortinergic centrally projecting EWcp is the primary seat of central nervous system transient receptor potential ankyrin 1 (TRPA1) cation channel mRNA expression. Here, we hypothesized that alcohol and its metabolites, that pass through the blood-brain barrier, may influence the function of urocortinergic cells in centrally projecting EWcp by activating TRPA1 ion channels. We aimed to examine the functional activity of TRPA1 in centrally projecting EWcp and its possible role in a mouse model of acute alcohol exposure. Methods: Electrophysiological measurements were performed on acute brain slices of C57BL/6J male mice containing the centrally projecting EWcp to prove the functional activity of TRPA1 using a selective, potent, covalent agonist JT010. Male TRPA1 knockout (KO) and wildtype (WT) mice were compared with each other in the morphological studies upon acute alcohol treatment. In both genotypes, half of the animals was treated intraperitoneally with 1 g/kg 6% ethanol vs. physiological saline-injected controls. Transcardial perfusion was performed 2 h after the treatment. In the centrally projecting EWcp area, FOS immunohistochemistry was performed to assess neuronal activation. TRPA1, CART, and urocortin 1 mRNA expression as well as urocortin 1 and CART peptide content was semi-quantified by RNAscope in situ hybridization combined with immunofluorescence. Results: JT010 activated TRPA1 channels of the urocortinergic cells in acute brain slices. Alcohol treatment resulted in a significant FOS activation in both genotypes. Alcohol decreased the Trpa1 mRNA expression in WT mice. The assessment of urocortin 1 peptide immunoreactivity revealed lower basal urocortin 1 in KO mice compared to WTs. The urocortin 1 peptide content was affected genotype-dependently by alcohol: the peptide content decreased in WTs while it increased in KO mice. Alcohol exposure influenced neither CART and urocortin 1 mRNA expression nor the centrally projecting EWcp/CART peptide content. Conclusion: We proved the presence of functional TRPA1 receptors on urocortin 1 neurons of the centrally projecting EWcp. Decreased Trpa1 mRNA expression upon acute alcohol treatment, associated with reduced neuronal urocortin 1 peptide content suggesting that this cation channel may contribute to the regulation of the urocortin 1 release.

15.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Article En | MEDLINE | ID: mdl-34959735

Transient receptor potential ankyrin 1 (TRPA1), a nonselective cation channel, contributes to several (patho)physiological processes. Smell loss is an early sign in several neurodegenerative disorders, such as multiple sclerosis, Parkinson's and Alzheimer's diseases; therefore, we focused on its role in olfaction and social behaviour with the aim to reveal its potential therapeutic use. The presence of Trpa1 mRNA was studied along the olfactory tract of mice by combined RNAscope in situ hybridisation and immunohistochemistry. The aversive effects of fox and cat odour were examined in parallel with stress hormone levels. In vitro calcium imaging was applied to test if these substances can directly activate TRPA1 receptors. The role of TRPA1 in social behaviour was investigated by comparing Trpa1 wild-type and knockout mice (KO). Trpa1 mRNA was detected in the olfactory bulb and piriform cortex, while its expression was weak in the olfactory epithelium. Fox, but not cat odour directly activated TRPA1 channels in TRPA1-overexpressing Chinese Hamster Ovary cell lines. Accordingly, KO animals showed less aversion against fox, but not cat odour. The social interest of KO mice was reduced during social habituation-dishabituation and social interaction, but not during resident-intruder tests. TRPA1 may contribute to odour processing at several points of the olfactory tract and may play an important role in shaping the social behaviour of mice. Thus, TRPA1 may influence the development of certain social disorders, serving as a potential drug target in the future.

16.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34681216

Hydrogen sulfide (H2S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H2S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na2S) and slow-releasing (GYY4137) H2S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1-/-) and wild-type (Trpa1+/+) mice. Intracerebroventricular administration of Na2S (0.5-1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na2S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H2S donors was significantly (p < 0.001) attenuated in Trpa1-/- mice compared to their Trpa1+/+ littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H2S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways.

17.
Int J Mol Sci ; 22(7)2021 Apr 04.
Article En | MEDLINE | ID: mdl-33916620

Somatostatin receptor subtype 4 (SST4) has been shown to mediate analgesic, antidepressant and anti-inflammatory functions without endocrine actions; therefore, it is proposed to be a novel target for drug development. To overcome the species differences of SST4 receptor expression and function between humans and mice, we generated an SST4 humanized mouse line to serve as a translational animal model for preclinical research. A transposon vector containing the hSSTR4 and reporter gene construct driven by the hSSTR4 regulatory elements were created. The vector was randomly inserted in Sstr4-deficient mice. hSSTR4 expression was detected by bioluminescent in vivo imaging of the luciferase reporter predominantly in the brain. RT-qPCR confirmed the expression of the human gene in the brain and various peripheral tissues consistent with the in vivo imaging. RNAscope in situ hybridization revealed the presence of hSSTR4 transcripts in glutamatergic excitatory neurons in the CA1 and CA2 regions of the hippocampus; in the GABAergic interneurons in the granular layer of the olfactory bulb and in both types of neurons in the primary somatosensory cortex, piriform cortex, prelimbic cortex and amygdala. This novel SST4 humanized mouse line might enable us to investigate the differences of human and mouse SST4 receptor expression and function and assess the effects of SST4 receptor agonist drug candidates.


CA1 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/metabolism , Gene Expression Regulation , Neurons/metabolism , Receptors, Somatostatin/biosynthesis , Animals , CA1 Region, Hippocampal/cytology , CA2 Region, Hippocampal/cytology , Humans , Mice , Mice, Transgenic , Receptors, Somatostatin/genetics
18.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article En | MEDLINE | ID: mdl-33806000

Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.


Neuralgia/drug therapy , Sulfides/pharmacology , TRPA1 Cation Channel/metabolism , Animals , Ganglia, Spinal/metabolism , Hyperalgesia , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microscopy, Confocal , RNA, Messenger/metabolism , Sciatic Nerve/pathology , Somatostatin/metabolism
19.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article En | MEDLINE | ID: mdl-33096776

Somatostatin is an important mood and pain-regulating neuropeptide, which exerts analgesic, anti-inflammatory, and antidepressant effects via its Gi protein-coupled receptor subtype 4 (SST4) without endocrine actions. SST4 is suggested to be a unique novel drug target for chronic neuropathic pain, and depression, as a common comorbidity. However, its neuronal expression and cellular mechanism are poorly understood. Therefore, our goals were (i) to elucidate the expression pattern of Sstr4/SSTR4 mRNA, (ii) to characterize neurochemically, and (iii) electrophysiologically the Sstr4/SSTR4-expressing neuronal populations in the mouse and human brains. Here, we describe SST4 expression pattern in the nuclei of the mouse nociceptive and anti-nociceptive pathways as well as in human brain regions, and provide neurochemical and electrophysiological characterization of the SST4-expressing neurons. Intense or moderate SST4 expression was demonstrated predominantly in glutamatergic neurons in the major components of the pain matrix mostly also involved in mood regulation. The SST4 agonist J-2156 significantly decreased the firing rate of layer V pyramidal neurons by augmenting the depolarization-activated, non-inactivating K+ current (M-current) leading to remarkable inhibition. These are the first translational results explaining the mechanisms of action of SST4 agonists as novel analgesic and antidepressant candidates.


Analgesics/pharmacology , Brain/metabolism , Neurons/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Affect/physiology , Animals , Brain/cytology , Butanes/pharmacology , CHO Cells , Cricetulus , Electrophysiology/methods , Humans , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Targeted Therapy , Naphthalenes/pharmacology , Neurons/drug effects , Receptors, Somatostatin/agonists , Sulfones/pharmacology , Vesicular Glutamate Transport Protein 1/genetics
20.
Neuroscience ; 354: 11-29, 2017 06 23.
Article En | MEDLINE | ID: mdl-28450265

Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.


Depression/etiology , Depression/genetics , Disease Models, Animal , Mutation/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Adaptation, Ocular/physiology , Adrenal Glands/pathology , Animals , Animals, Newborn , Body Weight/genetics , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/metabolism , Depression/blood , Depression/pathology , Exploratory Behavior/physiology , Female , Male , Maternal Deprivation , Mice , Mice, Knockout , Raphe Nuclei/pathology , Septal Nuclei/pathology , Stress, Psychological/complications , Swimming/psychology
...